COMPARISON OF CABLE CONDITION PARAMETERS AND INDICATORS

		LIRA	PD	ΤΑΝ δ	TDR	RVM	IRC
Nr	METHOD	Frequency	Electrical Partial	Dissipation	Time	Repeat	Isothermal
		Domain	Discharge	Factor	Domain	Voltage	reflection
	CATEGORY	Reflectometry	Measuring	Measuring	Reflectometry	Measuring	Current
							Measuring
1	Synthetic material – insulated power						
	cables						
2	Paper – insulated power cables						
3	Mixed cable routes with various						
						-	
4	Communication/ control cables						
5	LV power cables						
6	MV power cables						
7	HV power cables						
8	Short length cables (< 50 m)						
9	Medium length cables (> 5 km)						

Nr	METHOD	LIRA	PD	ταν δ	TDR	RVM	IRC
10	Long cables (> 30 km) ¹						
11	Global or integral condition assessment						
12	Local condition assessment						
13	Ageing indicator						•
14	Identifying splice/joint location						
15	Focus on condition assessment of splices						
16	Localization accuracy of dielectric weak points						
17	Possibility to assess cable terminations						
18	No need to disconnect assets ³	•					
19	Short time of connection & measurement (< 5 min)						
20	No need for additional HV test generator						
21	Available online monitoring option (on energized cables)						
22	No stress on cable by off-/online measurement						

	METHOD CATEGORY	LIRA	PD	ταν δ	TDR	RVM	IRC
23	Easy-to-read graphic/ numeric results						
24	Defined acceptance criteria ⁴						
25	Robustness against external interference						
26	Compactness of available equipment						
27	No performance difference (On- /Offline)			N/A	N/A	N/A	N/A
28	High visibility range of online option			N/A	N/A	N/A	N/A
29	Detection ability of single small void	-					
30	Detection ability of small dielectric change						
31	Detection ability of fluid intrusion, oil leak						
32	Fault localization on already failed cables	•					
33	Finding high Ω faults without reference						
34	High reproducibility of measurement results						
35	Information value after 1 st offline measurement						

Nr	METHOD CATEGORY	LIRA	PD	ταν δ	TDR	RVM	IRC
36	Information value after < 1 measuring						
37	Uniqueness of available equipment on market						
38	Possibility to produce multiple interpretations and extended value basis from same data						
39	Standardized method (e.g. ISO, IEC, IEEE)						
40	No influence of probe cable length on results						

2) Fault localization accuracy 0.1 - 0.3% of cable length

3)

4 Cutsomer